THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW10 Solution

Yan Lung Li

1. (P. 276 Q 1 c$)$

Let $x_{n}=2^{-\frac{1}{n}}$. Since $\lim _{n \rightarrow \infty} x_{n}=1 \neq 0$, by the contrapositive of 3.7 .3 of the textbook, the series diverges.
2. (P. 276 Q3c)

Note that

$$
\begin{aligned}
\sum_{n=1}^{\infty}(\ln n)^{-\ln n}=\sum_{m=0}^{\infty} \sum_{n=2^{m}}^{2^{m+1}-1}(\ln n)^{-\ln n} & \leq \sum_{m=0}^{\infty} \sum_{n=2^{m}}^{2^{m+1}-1}\left(\ln 2^{m}\right)^{-\ln 2^{m}} \\
& =\sum_{m=0}^{\infty} 2^{m}\left(\ln 2^{m}\right)^{-\ln 2^{m}}
\end{aligned}
$$

We aim to show that $\sum_{m=0}^{\infty} 2^{m}\left(\ln 2^{m}\right)^{-\ln 2^{m}}$ converges: let $x_{m}=2^{m}\left(\ln 2^{m}\right)^{-\ln 2^{m}}$. Note that

$$
x_{m}=\frac{2^{m}}{(m \ln 2)^{m \ln 2}}=\left(\frac{2}{(m \ln 2)^{\ln 2}}\right)^{m}
$$

Since $\lim _{m \rightarrow \infty} \frac{2}{(m \ln 2)^{\ln 2}}=0$, there exists $M \in \mathbb{N}$ such that for all $m \geq M, \frac{2}{(m \ln 2)^{\ln 2}}<\frac{1}{2}$. Therefore, for all $m \geq M, x_{m} \leq\left(\frac{1}{2}\right)^{m}$. Therefore, by Comparison Test (3.7.7 of the textbook), $\sum_{m=0}^{\infty} 2^{m}\left(\ln 2^{m}\right)^{-\ln 2^{m}}$ converges, and hence by the first inequality, $\sum_{n=1}^{\infty}(\ln n)^{-\ln n}$ converges.

Note: The trick in the first inequality can be generalised to a test known as "Cauchy condensation test", which is particularly useful when the series involves logarithm.
3. (P. 276 Q4c)

Note that $e^{-\ln n}=e^{\ln \left(n^{-1}\right)}=\frac{1}{n}$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series diverges.
4. (P. 280 Q9)

Let $x_{n}=e^{-n t}$ and $y_{n}=a_{n}$. Then since x_{n} is decreasing with $\lim _{n \rightarrow \infty} x_{n}=0$, and by assumption $\sum a_{n}$ is bounded, by Dirichlet Test (9.3.4 of the textbook), $\sum x_{n} y_{n}=\sum a_{n} e^{-n t}$ converges

